Приклад обчислення кута sin. Основні тригонометричні формули та тотожності sin, cos, tg, ctg. Значення тригонометричних функцій

Для вирішення деяких завдань буде корисною таблиця тригонометричних тотожностей, яка дозволить набагато простіше здійснювати перетворення функцій:

Найпростіші тригонометричні тотожності

Приватне від розподілу синуса кута альфа на косинус того ж кута дорівнює тангенсу цього кута (Формула 1). також доказ правильності перетворення найпростіших тригонометричних тотожностей.
Приватне від розподілу косинуса кута альфа на синус того ж кута дорівнює котангенсу цього ж кута (Формула 2)
Секанс кута дорівнює одиниці, поділеній на косинус цього самого кута (Формула 3)
Сума квадратів синуса і косинуса одного й того самого кута дорівнює одиниці (Формула 4). див. також доказ суми квадратів косинуса та синуса.
Сума одиниці та тангенсу кута дорівнює відношенню одиниці до квадрату косинуса цього кута (Формула 5)
Одиниця плюс котангенс кута дорівнює частці від розподілу одиниці на синус квадрат цього кута (Формула 6)
Твір тангенсу на котангенс одного і того ж кута дорівнює одиниці (Формула 7).

Перетворення негативних кутів тригонометричних функцій (парність та непарність)

Для того, щоб позбавитися від негативного значення градусної міри кута при обчисленні синуса, косинуса або тангенсу, можна скористатися такими тригонометричними перетвореннями (тотожністю), заснованими на принципах парності або непарності тригонометричних функцій.


Як видно, косинусі секанс є парною функцією, синус, тангенс та котангенс - непарні функції.

Синус негативного кута дорівнює негативному значенню синуса цього ж позитивного кута (мінус синус альфа).
Косинус "мінус альфа" дасть те саме значення, що і косинус кута альфа.
Тангенс мінус альфа дорівнює мінусу тангенс альфа.

Формули приведення подвійного кута (синус, косинус, тангенс та котангенс подвійного кута)

Якщо необхідно розділити кут навпіл, або, навпаки, перейти від подвійного кута до одинарного, можна скористатися такими тригонометричними тотожностями:


Перетворення подвійного кута (синуса подвійного кута, косинуса подвійного кута та тангенса подвійного кута) в одинарний відбувається за такими правилами:

Синус подвійного кутадорівнює подвоєному твору синуса на косинус одинарного кута

Косинус подвійного кутадорівнює різниці квадрата косинуса одинарного кута і квадрата синуса цього кута

Косинус подвійного кутадорівнює подвоєному квадрату косинуса одинарного кута мінус одиниця

Косинус подвійного кутадорівнює одиниці мінус подвійний синус квадрат одинарного кута

Тангенс подвійного кутадорівнює дробу, чисельник якого - подвоєний тангенс одинарного кута, а знаменник дорівнює одиниці мінус тангенс квадрат одинарного кута.

Котангенс подвійного кутадорівнює дробу, чисельник якого - квадрат котангенсу одинарного кута мінус одиниця, а знаменник дорівнює подвоєному котангенсу одинарного кута

Формули універсальної тригонометричної підстановки

Наведені нижче формули перетворення можуть стати в нагоді, коли потрібно аргумент тригонометричної функції (sin α, cos α, tg α) розділити на два і привести вираз до значення половини кута. Зі значення α отримуємо α/2 .

Дані формули називаються формулами універсальної тригонометричної підстановки. Їх цінність у тому, що тригонометричний вираз з допомогою зводиться до висловлювання тангенса половини кута, незалежно від цього, які тригонометричні функції (sin cos tg ctg) були у виразі спочатку. Після цього рівняння з тангенсом половини кута вирішити набагато простіше.

Тригонометричні тотожності перетворення половини кута

Наведені нижче формули тригонометричного перетворення половинної величини кута для його цілого значення.
Значення аргументу тригонометричної функції α/2 наводиться значення аргументу тригонометричної функції α.

Тригонометричні формули складання кутів

cos (α - β) = cos α · cos β + sin α · sin β

sin (α + β) = sin α · cos β + sin β · cos α

sin (α - β) = sin α · cos β - sin β · cos α
cos (α + β) = cos α · cos β - sin α · sin β

Тангенс та котангенс суми кутівальфа та бета можуть бути перетворені за такими правилами перетворення тригонометричних функцій:

Тангенс суми кутівдорівнює дробу, чисельник якого - сума тангенса першого і тангенса другого кута, а знаменник - одиниця мінус добуток тангенса першого кута на тангенс другого кута.

Тангенс різниці кутівдорівнює дробу, чисельник якого дорівнює різниці тангенсу кута, що зменшується, і тангенса віднімається кута, а знаменник - одиниці плюс добуток тангенсів цих кутів.

Котангенс суми кутівдорівнює дробу, чисельник якого дорівнює добутку котангенсів цих кутів плюс одиниця, а знаменник дорівнює різниці котангенсу другого кута та котангенсу першого кута.

Котангенс різниці кутівдорівнює дробу, чисельник якого - добуток котангенсів цих кутів мінус одиниця, а знаменник дорівнює сумі котангенсів цих кутів.

Дані тригонометричні тотожності зручно застосовувати, коли потрібно вирахувати, наприклад, тангенс 105 градусів (tg 105). Якщо його як tg (45 + 60), можна скористатися наведеними тотожними перетвореннями тангенсу суми кутів, після чого просто підставити табличні значення тангенса 45 і тангенса 60 градусів.

Формули перетворення суми або різниці тригонометричних функцій

Вирази, що є сумою виду sin α + sin β можна перетворити за допомогою наступних формул:

Формули потрійного кута - перетворення sin3α cos3α tg3α в sinα cosα tgα

Іноді необхідно перетворити потрійну величину кута так, щоб аргументом тригонометричної функції замість 3 став кут α.
У цьому випадку можна скористатися формулами (тотожностями) перетворення потрійного кута:

Формули перетворення твору тригонометричних функцій

Якщо виникає необхідність перетворити добуток синусів різних кутів косинусів різних кутів або навіть твори синуса на косинус, то можна скористатися такими тригонометричними тотожностями:


У цьому випадку добуток функцій синуса, косинуса або тангенсу різних кутів буде перетворено на суму чи різницю.

Формули приведення тригонометричних функцій

Користуватися таблицею приведення слід так. У рядку вибираємо функцію, яка нас цікавить. У стовпці – кут. Наприклад, синус кута (α+90) на перетині першого рядка та першого стовпця з'ясовуємо, що sin (α+90) = cos α.

Поняття синуса, косинуса, тангенса та котангенса є основними категоріями тригонометрії – розділу математики, і нерозривно пов'язані з визначенням кута. Володіння цією математичною наукою вимагає запам'ятовування та розуміння формул та теорем, а також розвиненого просторового мислення. Саме тому у школярів та студентів тригонометричні обчислення нерідко спричиняють труднощі. Щоб подолати їх, слід докладніше ознайомитися з тригонометричними функціями та формулами.

Поняття у тригонометрії

Щоб розібратися в базових поняттях тригонометрії, слід спочатку визначитися з тим, що таке прямокутний трикутник і кут в колі, і чому саме з ними пов'язані всі тригонометричні обчислення. Трикутник, у якому один із кутів має величину 90 градусів, є прямокутним. Історично ця фігура часто використовувалася людьми в архітектурі, навігації, мистецтві, астрономії. Відповідно, вивчаючи та аналізуючи властивості цієї фігури, люди прийшли до обчислення відповідних співвідношень її параметрів.

Основні категорії, пов'язані з прямокутними трикутниками - гіпотенуза та катети. Гіпотенуза – сторона трикутника, що лежить проти прямого кута. Катети, відповідно, це решта двох сторін. Сума кутів будь-яких трикутників завжди дорівнює 180 градусів.

Сферична тригонометрія - розділ тригонометрії, який не вивчається в школі, однак у прикладних науках на кшталт астрономії та геодезії, вчені користуються саме ним. Особливість трикутника у сферичній тригонометрії в тому, що він завжди має суму кутів понад 180 градусів.

Кути трикутника

У прямокутному трикутнику синусом кута є відношення катета, що протилежить шуканому куту, до гіпотенузи трикутника. Відповідно, косинус - це відношення прилеглого катета та гіпотенузи. Обидва ці значення завжди мають величину менше одиниці, оскільки гіпотенуза завжди довша за катет.

Тангенс кута - величина, що дорівнює відношенню протилежного катета до прилеглого катета шуканого кута, або синуса до косинусу. Котангенс, своєю чергою, це ставлення прилеглого катета шуканого кута до протилежного кактету. Котангенс кута можна отримати, розділивши одиницю на значення тангенса.

Одиничне коло

Одиничне коло в геометрії - коло, радіус якого дорівнює одиниці. Таке коло будується в декартовій системі координат, при цьому центр кола збігається з точкою початку координат, а початкове положення вектора радіусу визначено за позитивним напрямком осі Х (осі абсцис). Кожна точка кола має дві координати: ХХ та YY, тобто координати абсцис та ординат. Вибравши на колі будь-яку точку в площині ХХ, і опустивши з неї перпендикуляр на вісь абсцис, отримуємо прямокутний трикутник, утворений радіусом до обраної точки (позначимо її буквою С), перпендикуляром, проведеним до осі Х (точка перетину позначається буквою G), а відрізок осі абсцис між початком координат (точка позначена буквою А) та точкою перетину G. Отриманий трикутник АСG — прямокутний трикутник, вписаний у коло, де AG — гіпотенуза, а АС та GC — катети. Кут між радіусом кола АС та відрізком осі абсцис з позначенням AG, визначимо як α (альфа). Так, cos = AG/AC. Враховуючи, що АС - це радіус одиничного кола, і він дорівнює одиниці, вийде, що cos α = AG. Аналогічно sin α=CG.

Крім того, знаючи ці дані, можна визначити координату точки С на колі, оскільки cos α=AG, а sin α=CG, отже, точка має задані координати (cos α;sin α). Знаючи, що тангенс дорівнює відношенню синуса до косинусу, можна визначити, що tg = y/х, а ctg = х/y. Розглядаючи кути у негативній системі координат, можна розрахувати, що значення синуса та косинуса деяких кутів можуть бути негативними.

Обчислення та основні формули


Значення тригонометричних функцій

Розглянувши сутність тригонометричних функцій через одиничне коло, можна вивести значення цих функцій деяких кутів. Значення перераховані у таблиці нижче.

Найпростіші тригонометричні тотожності

Рівняння, у яких під знаком тригонометричної функції є невідоме значення, називаються тригонометричними. Тотожності зі значенням sin х = α, k — будь-яке ціле число:

  1. sin х = 0, х = πk.
  2. 2. sin х = 1, х = π/2 + 2πk.
  3. sin x = -1, x = -π/2 + 2πk.
  4. sin х = а, | > 1, немає рішень.
  5. sin х = а, | ≦ 1, х = (-1)^k * arcsin α + πk.

Тотожності зі значенням cos х = а, де k - будь-яке ціле число:

  1. cos х = 0, х = π/2 + πk.
  2. cos х = 1, х = 2πk.
  3. cos х = -1, х = π + 2πk.
  4. cos х = а, | > 1, немає рішень.
  5. cos х = а, | ≤ 1, х = ±arccos α + 2πk.

Тотожності зі значенням tg х = а, де k - будь-яке ціле число:

  1. tg х = 0, х = π/2 + πk.
  2. tg х = а, х = arctg α + πk.

Тотожності зі значенням ctg х = а, де k - будь-яке ціле число:

  1. ctg х = 0, х = π/2 + πk.
  2. ctg х = а, х = arcctg α + πk.

Формули приведення

Ця категорія постійних формул позначає методи, за допомогою яких можна перейти від тригонометричних функцій виду до функцій аргументу, тобто навести синус, косинус, тангенс і котангенс кута будь-якого значення до відповідних показників кута інтервалу від 0 до 90 градусів для більшої зручності обчислень.

Формули приведення функцій для синуса кута виглядають таким чином:

  • sin(900 - α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 - α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 - α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 - α) = -sin α;
  • sin(3600 + α) = sin α.

Для косинуса кута:

  • cos(900 - α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 - α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 - α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 - α) = cos α;
  • cos(3600 + α) = cos α.

Використання вищезазначених формул можливе за дотримання двох правил. По-перше, якщо кут можна представити як значення (π/2±a) або (3π/2±a), значення функції змінюється:

  • з sin на cos;
  • з cos на sin;
  • з tg на ctg;
  • із ctg на tg.

Значення функції залишається незмінним, якщо кут може бути представлений як (π±a) або (2π±a).

По-друге, знак наведеної функції не змінюється: якщо він спочатку був позитивний, таким і залишається. Аналогічно із негативними функціями.

Формули додавання

Ці формули виражають величини синуса, косинуса, тангенсу та котангенсу суми та різниці двох кутів повороту через їх тригонометричні функції. Зазвичай кути позначаються як і β.

Формули мають такий вигляд:

  1. sin(α ± β) = sin α * cos β ± cos α * sin.
  2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
  3. tg(α±β) = (tgα±tgβ)/(1∓tgα*tgβ).
  4. ctg(α±β) = (-1±ctgα*ctgβ)/(ctgα±ctgβ).

Ці формули справедливі будь-яких величин кутів α і β.

Формули подвійного та потрійного кута

Тригонометричні формули подвійного та потрійного кута — це формули, які пов'язують функції кутів 2α та 3α відповідно, із тригонометричними функціями кута α. Виводяться з формул додавання:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 - 2sin^2α.
  3. tg2α = 2tgα/(1 - tg^2α).
  4. sin3α = 3sinα - 4sin^3α.
  5. cos3α = 4cos^3α - 3cosα.
  6. tg3α = (3tgα - tg^3α) / (1-tg^2α).

Перехід від суми до твору

Враховуючи, що 2sinx*cosy = sin(x+y) + sin(x-y), спростивши цю формулу, отримуємо тотожність sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Аналогічно sinα - sinβ = 2sin(α - β) / 2 * cos (α + β) / 2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα - cosβ = 2sin(α + β)/2 * sin(α - β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα - tgβ = sin(α - β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓α) = √2cos(π/4±α).

Перехід від твору до суми

Ці формули випливають з тотожностей переходу суми до твір:

  • sinα * sinβ = 1/2*;
  • cosα * cosβ = 1/2*;
  • sinα*cosβ=1/2*.

Формули зниження ступеня

У цих тотожностях квадратний і кубічний ступінь синуса і косинуса можна виразити через синус і косинус першого ступеня кратного кута:

  • sin^2 α = (1 - cos2α)/2;
  • cos^2 α = (1 + cos2α)/2;
  • sin^3 α = (3 * sinα - sin3α)/4;
  • cos^3 α = (3 * cosα + cos3α)/4;
  • sin^4 α = (3 - 4cos2α + cos4α)/8;
  • cos^4 α = (3 + 4cos2α + cos4α)/8.

Універсальна підстановка

Формули універсальної тригонометричної підстановки виражають тригонометричні функції через тангенс половинного кута.

  • sin x = (2tgx/2) * (1 + tg^2 x/2), при цьому х = π + 2πn;
  • cos x = (1 - tg^2 x/2) / (1 + tg^2 x/2), де х = π + 2πn;
  • tg x = (2tgx/2) / (1 - tg^2 x/2), де х = π + 2πn;
  • ctg x = (1 - tg^2 x/2) / (2tgx/2), при цьому х = π + 2πn.

Приватні випадки

Окремі випадки найпростіших тригонометричних рівнянь наведені нижче (k - будь-яке ціле число).

Приватні для синусу:

Значення sin x Значення x
0 πk
1 π/2 + 2πk
-1 -π/2 + 2πk
1/2 π/6 + 2πk або 5π/6 + 2πk
-1/2 -π/6 + 2πk або -5π/6 + 2πk
√2/2 π/4 + 2πk або 3π/4 + 2πk
-√2/2 -π/4 + 2πk або -3π/4 + 2πk
√3/2 π/3 + 2πk або 2π/3 + 2πk
-√3/2 -π/3 + 2πk або -2π/3 + 2πk

Приватні для косинуса:

Значення cos x Значення х
0 π/2 + 2πk
1 2πk
-1 2 + 2πk
1/2 ±π/3 + 2πk
-1/2 ±2π/3 + 2πk
√2/2 ±π/4 + 2πk
-√2/2 ±3π/4 + 2πk
√3/2 ±π/6 + 2πk
-√3/2 ±5π/6 + 2πk

Приватні для тангенсу:

Значення tg x Значення х
0 πk
1 π/4 + πk
-1 -π/4 + πk
√3/3 π/6 + πk
-√3/3 -π/6 + πk
√3 π/3 + πk
-√3 -π/3 + πk

Приватні для котангенсу:

Значення ctg x Значення x
0 π/2 + πk
1 π/4 + πk
-1 -π/4 + πk
√3 π/6 + πk
-√3 -π/3 + πk
√3/3 π/3 + πk
-√3/3 -π/3 + πk

Теореми

Теорема синусів

Існує два варіанти теореми - простий та розширений. Проста теорема синусів: a/sin α = b/sin β = c/sin γ. При цьому, a, b, c — сторони трикутника, і α, β, γ — відповідно кути, що протилежать.

Розширена теорема синусів для довільного трикутника: a/sin α = b/sin β = c/sin γ = 2R. У цьому тотожності R позначає радіус кола, який вписаний заданий трикутник.

Теорема косінусів

Тотожність відображається так: a^2 = b^2 + c^2 — 2*b*c*cos α. У формулі a, b, c - сторони трикутника, і α - кут, що протилежить стороні а.

Теорема тангенсів

Формула виражає зв'язок між тангенсами двох кутів і довжиною сторін, що їм протилежні. Сторони позначені як a, b, c, а відповідні протилежні кути – α, β, γ. Формула теореми тангенсів: (a - b) / (a ​​+ b) = tg ((α - β) / 2) / tg ((α + β) / 2).

Теорема котангенсів

Зв'язує радіус вписаного в трикутник кола з довжиною його сторін. Якщо a, b, c — сторони трикутника, і А, В, С, відповідно, кути, що протилежать їм, r — радіус вписаного кола, і p — напівпериметр трикутника, справедливі такі тотожності:

  • ctg A/2 = (p-a)/r;
  • ctg B/2 = (p-b)/r;
  • ctg C/2 = (p-c)/r.

Прикладне застосування

Тригонометрія - не тільки теоретична наука, пов'язана з математичними формулами. Її властивостями, теоремами і правилами користуються практично різні галузі людської діяльності — астрономія, повітряна і морська навігація, теорія музики, геодезія, хімія, акустика, оптика, електроніка, архітектура, економіка, машинобудування, вимірювальні роботи, комп'ютерна графіка, картографія, океанографія, і багато інших.

Синус, косинус, тангенс і котангенс — основні поняття тригонометрії, з допомогою яких математично можна висловити співвідношення між кутами і довжинами сторін у трикутнику, і знайти шукані величини через тотожності, теореми та правила.

Таблиця значень тригонометричних функцій

Примітка. У цій таблиці значень тригонометричних функцій використовується знак √ для позначення квадратного кореня. Для позначення дробу – символ "/".

Див. такожкорисні матеріали:

Для визначення значення тригонометричної функції, знайдіть його на перетині рядка із зазначенням тригонометричної функції. Наприклад, синус 30 градусів - шукаємо колонку із заголовком sin (синус) і знаходимо перетин цієї колонки таблиці з рядком "30 градусів", на їх перетині зчитуємо результат - одна друга. Аналогічно знаходимо косинус 60градусів, синус 60градусів (ще раз, у перетині колонки sin (синус) та рядки 60 градусів знаходимо значення sin 60 = √3/2) тощо. Так само знаходяться значення синусів, косінусів та тангенсів інших "популярних" кутів.

Синус пі, косинус пі, тангенс пі та інших кутів у радіанах

Наведена нижче таблиця косінусів, синусів та тангенсів також підходить для знаходження значення тригонометричних функцій, аргумент яких заданий у радіанах. Для цього скористайтеся другою колонкою значень кута. Завдяки цьому можна перевести значення популярних кутів із градусів у радіани. Наприклад, знайдемо кут 60 градусів у першому рядку і під ним прочитаємо його значення у радіанах. 60 градусів дорівнює π/3 радіан.

Число пі однозначно виражає залежність довжини кола від градусної міри кута. Таким чином, пі радіан дорівнюють 180 градусам.

Будь-яке число, виражене через пі (радіан), можна легко перевести в градусну міру, замінивши число пі (π) на 180.

Приклади:
1. Сінус пі.
sin π = sin 180 = 0
таким чином, синус пі - це теж саме, що синус 180 градусів і він дорівнює нулю.

2. Косинус пі.
cos π = cos 180 = -1
Таким чином, косинус пі - це теж саме, що косинус 180 градусів і він дорівнює мінусу одиниці.

3. Тангенс пі
tg π = tg 180 = 0
Таким чином, тангенс пі - це теж саме, що тангенс 180 градусів і він дорівнює нулю.

Таблиця значень синуса, косинуса, тангенса для кутів 0 - 360 градусів (часті значення)

значення кута α
(градусів)

значення кута α
у радіанах

(через число пі)

sin
(синус)
cos
(Косінус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(Косеканс)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Якщо в таблиці значень тригонометричних функцій замість значення функції вказаний прочерк (тангенс (tg) 90 градусів, котангенс (ctg) 180 градусів), значить при даному значенні градусної міри кута функція не має певного значення. Якщо ж прочерку немає - клітина порожня, то ми ще не внесли потрібне значення. Ми цікавимося, за якими запитами до нас приходять користувачі і доповнюємо таблицю новими значеннями, незважаючи на те, що поточних даних про значення косінусів, синусів і тангенсів значень кутів, що найчастіше зустрічаються, цілком достатньо для вирішення більшості завдань.

Таблиця значень тригонометричних функцій sin, cos, tg для найпопулярніших кутів
0, 15, 30, 45, 60, 90...360 градусів
(цифрові значення "як за таблицями Брадіса")

значення кута α (градусів) значення кута α у радіанах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18



|BD|- Довжина дуги кола з центром у точці A.
α - Кут, виражений у радіанах.

Сінус ( sin α) - це тригонометрична функція, що залежить від кута між гіпотенузою і катетом прямокутного трикутника, Рівна відношенню довжини протилежного катета | BC | до довжини гіпотенузи | AC |
Косинус ( cos α) - це тригонометрична функція, що залежить від кута α між гіпотенузою та катетом прямокутного трикутника, що дорівнює відношенню довжини прилеглого катета |AB| до довжини гіпотенузи | AC |

Прийняті позначення

;
;
.

;
;
.

Графік функції синус, y = sin x


Графік функції косинус, y = cos x


Властивості синуса та косинуса

Періодичність

Функції y = sin xта y = cos xперіодичні з періодом 2 π.

Парність

Функція синус – непарна. Функція косинус – парна.

Область визначення та значень, екстремуми, зростання, спадання

Функції синус і косинус безперервні у своїй області визначення, тобто всім x (див. доказ безперервності). Їхні основні властивості представлені в таблиці (n - ціле).

y = sin x y = cos x
Область визначення та безперервність - ∞ < x < + ∞ - ∞ < x < + ∞
Область значень -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Зростання
Зменшення
Максимуми, y = 1
Мінімуми, y = - 1
Нулі, y = 0
Крапки перетину з віссю ординат, x = 0 y = 0 y = 1

Основні формули

Сума квадратів синуса та косинуса

Формули синуса та косинуса від суми та різниці



;
;

Формули твору синусів та косінусів

Формули суми та різниці

Вираз синуса через косинус

;
;
;
.

Вираз косинуса через синус

;
;
;
.

Вираз через тангенс

; .

При , маємо:
; .

При:
; .

Таблиця синусів та косінусів, тангенсів та котангенсів

У цій таблиці представлені значення синусів і косінусів при деяких значеннях аргументу.

Вирази через комплексні змінні


;

Формула Ейлера

Вирази через гіперболічні функції

;
;

Похідні

; . Висновок формул > > >

Похідні n-го порядку:
{ -∞ < x < +∞ }

Секанс, косеканс

Зворотні функції

Зворотними функціямидо синуса і косинусу є арксинус і арккосинус відповідно.

Арксинус, arcsin

Арккосинус, arccos

Використана література:
І.М. Бронштейн, К.А. Семендяєв, Довідник з математики для інженерів та учнів втузів, «Лань», 2009.

Див. також:

У цій статті зібрані таблиці синусів, косінусів, тангенсів та котангенсів. Спочатку ми наведемо таблицю основних значень тригонометричних функцій, тобто, таблицю синусів, косінусів, тангенсів та котангенсів кутів 0, 30, 45, 60, 90, …, 360 градусів ( 0, π/6, π/4, π/3, π/2, …, 2πрадіан). Після цього ми дамо таблицю синусів та косінусів, а також таблицю тангенсів та котангенсів В. М. Брадіса, і покажемо, як використовувати ці таблиці при знаходженні значень тригонометричних функцій.

Навігація на сторінці.

Таблиця синусів, косінусів, тангенсів та котангенсів для кутів 0, 30, 45, 60, 90, … градусів

Список літератури.

  • Алгебра:Навч. для 9 кл. середовищ. шк./Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова; За ред. З. А. Теляковського.- М.: Просвітництво, 1990.- 272 з.: ил.- ISBN 5-09-002727-7
  • Башмаков М. І.Алгебра та початку аналізу: Навч. для 10-11 кл. середовищ. шк. - 3-тє вид. - М: Просвітництво, 1993. - 351 с.: іл. - ISBN 5-09-004617-4.
  • Алгебрата початку аналізу: Навч. для 10-11 кл. загальноосвіт. установ / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудніцин та ін; За ред. А. Н. Колмогорова. - 14-те вид. - М.: Просвітництво, 2004. - 384 с.: Іл. - ISBN 5-09-013651-3.
  • Гусєв В. А., Мордкович А. Г.Математика (посібник для вступників у технікуми): Навч. посібник.- М.; Вищ. шк., 1984.-351 с., іл.
  • Брадіс В. М.Чотиризначні математичні таблиці: Для загальноосвіт. навч. закладів. - 2-ге вид. - М: Дрофа, 1999. - 96 с.: іл. ISBN 5-7107-2667-2