Відношення протилежного катета до гіпотенузи. Синус, косинус, тангенс, котангенс гострого кута. Тригонометричні функції. можна познайомитися з функціями та похідними

Тригонометрія - розділ математичної науки, в якому вивчаються тригонометричні функції та їх використання у геометрії. Розвиток тригонометрії розпочався ще за часів античної Греції. За часів середньовіччя важливий внесок у розвиток цієї науки зробили вчені Близького Сходу та Індії.

Ця стаття присвячена базовим поняттям та визначенням тригонометрії. У ній розглянуто визначення основних тригонометричних функцій: синуса, косинуса, тангенсу та котангенсу. Пояснено та проілюстровано їх зміст у контексті геометрії.

Спочатку визначення тригонометричних функцій, аргументом яких є кут, виражалися через співвідношення сторін прямокутного трикутника.

Визначення тригонометричних функцій

Синус кута (sin α) - відношення катета, що протилежить цьому куту, до гіпотенузи.

Косинус кута (cos α) – відношення прилеглого катета до гіпотенузи.

Тангенс кута (t g α) – відношення протилежного катета до прилеглого.

Котангенс кута (c t g α) - відношення прилеглого катета до протилежного.

Дані визначення дано для гострого кута прямокутного трикутника!

Наведемо ілюстрацію.

У трикутнику ABC із прямим кутом С синус кута А дорівнює відношенню катета BC до гіпотенузи AB.

Визначення синуса, косинуса, тангенсу та котангенсу дозволяють обчислювати значення цих функцій за відомими довжинами сторін трикутника.

Важливо пам'ятати!

Область значень синуса і косинуса: від -1 до 1. Іншими словами синус і косинус набувають значення від -1 до 1. Область значень тангенса і котангенса - вся числова пряма, тобто ці функції можуть набувати будь-які значення.

Визначення, дані вище, відносяться до гострих кутів. У тригонометрії вводиться поняття кута повороту, величина якого, на відміну від гострого кута, не обмежена рамками від 0 до 90 градусів. Кут повороту в градусах або радіанах виражається будь-яким дійсним числом від ∞ до + ∞.

У цьому контексті можна дати визначення синуса, косинуса, тангенсу та котангенсу кута довільної величини. Уявімо одиничне коло з центром на початку декартової системи координат.

Початкова точка A з координатами (1 , 0) повертається навколо центру одиничного кола на деякий кут і переходить в точку A 1 . Визначення дається через координати точки A 1 (x, y).

Синус (sin) кута повороту

Синус кута повороту - це ордината точки A 1 (x , y). sin α = y

Косинус (cos) кута повороту

Косинус кута повороту α - це абсцис точки A 1 (x, y). cos α = х

Тангенс (tg) кута повороту

Тангенс кута повороту - це відношення ординати точки A 1 (x, y) до її абсцис. t g α = y x

Котангенс (ctg) кута повороту

Котангенс кута повороту α - це відношення абсцис точки A 1 (x , y) до її ординати. c t g α = x y

Синус та косинус визначені для будь-якого кута повороту. Це логічно, адже абсцису та ординату точки після повороту можна визначити за будь-якого вугілля. Інакше справа з тангенсом і котангенсом. Тангенс не визначено, коли точка після повороту перетворюється на точку з нульовою абсцисою (0 , 1) і (0 , - 1). У таких випадках вираз для тангенсу t g α = y x просто не має сенсу, тому що в ньому є поділ на нуль. Аналогічно ситуація із котангенсом. Відмінністю у тому, що котангенс не визначено у випадках, як у нуль звертається ордината точки.

Важливо пам'ятати!

Синус та косинус визначені для будь-яких кутів α.

Тангенс визначений для всіх кутів, крім α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс визначений для всіх кутів, крім α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При вирішенні практичних прикладів не кажуть "синус кута повороту α". Слова "кут повороту" просто опускають, маючи на увазі, що з контексту і так зрозуміло, про що йдеться.

Числа

Як бути з визначенням синуса, косинуса, тангенсу та котангенсу числа, а не кута повороту?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом та котангенсом числа tназивається число, яке відповідно дорівнює синусу, косинусу, тангенсу та котангенсу в tрадіан.

Наприклад, синус числа 10 π дорівнює синусу кута повороту величиною 10 π рад.

Існує й інший підхід до визначення синуса, косинуса, тангенсу та котангенсу числа. Розглянемо його докладніше.

Будь-кому дійсному числу tставиться у відповідність точка на одиничному колі з центром на початку прямокутної декартової системи координат. Синус, косинус, тангенс та котангенс визначаються через координати цієї точки.

Початкова точка на колі - точка A з координатами (1, 0).

Позитивному числу t

Негативному числу tвідповідає точка, в яку перейде початкова точка, якщо рухатиметься по колу проти годинникової стрілки та пройде шлях t .

Тепер, коли зв'язок числа та точки на колі встановлено, переходимо до визначення синуса, косинуса, тангенсу та котангенсу.

Синус (sin) числа t

Синус числа t- ордината точки одиничного кола, що відповідає числу t. sin t = y

Косинус (cos) числа t

Косинус числа t- абсцису точки одиничного кола, що відповідає числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t- відношення ординати до абсцисі точки одиничного кола, що відповідає числу t. t g t = y x = sin t cos t

Останні визначення знаходяться у відповідності і не суперечать визначенню, даному на початку цього пункту. Крапка на колі, що відповідає числу t, збігається з точкою, в яку переходить початкова точка після повороту на кут tрадіан.

Тригонометричні функції кутового та числового аргументу

Кожному значенню кута відповідає певне значення синуса і косинуса цього кута. Також, як усім кутам α, відмінним від α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) відповідає певне значення тангенсу. Котангенс, як сказано вище, визначений для всіх α, крім α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можна сказати, що sin α, cos α, t g α, c t g α - це функції кута альфа, або функції кутового аргументу.

Аналогічно можна говорити про синус, косінус, тангенс і котангенс, як про функції числового аргументу. Кожному дійсному числу tвідповідає певне значення синуса чи косинуса числа t. Усім числам, відмінним від π 2 + π · k, k ∈ Z відповідає значення тангенсу. Котангенс, аналогічно, визначений всім чисел, крім π · k , k ∈ Z.

Основні функції тригонометрії

Синус, косинус, тангенс та котангенс - основні тригонометричні функції.

З контексту зазвичай зрозуміло, з яким аргументом тригонометричної функції (кутовий аргумент чи числовий аргумент) ми маємо справу.

Повернемося до даних на самому початку визначенням та кутку альфа, що лежить у межах від 0 до 90 градусів. Тригонометричні визначеннясинуса, косинуса, тангенсу та котангенсу повністю узгоджуються з геометричними визначеннями, даними за допомогою співвідношень сторін прямокутного трикутника Покажемо це.

Візьмемо одиничне коло з центром у прямокутній декартовій системі координат. Повернемо початкову точку A (1, 0) на кут величиною до 90 градусів і проведемо з отриманої точки A 1 (x, y) перпендикуляр до осі абсцис. В отриманому прямокутному трикутнику кут A 1 O H дорівнює куту повороту α довжина катета O H дорівнює абсцисі точки A 1 (x , y) . Довжина катета, що протилежить куту, дорівнює ординаті точки A 1 (x , y) , а довжина гіпотенузи дорівнює одиниці, тому що вона є радіусом одиничного кола.

Відповідно до визначення геометрії, синус кута α дорівнює відношенню протилежного катета до гіпотенузи.

sin α = A 1 H O A 1 = y 1 = y

Значить, визначення синуса гострого кута у прямокутному трикутнику через співвідношення сторін еквівалентно визначенню синуса кута повороту α при альфа лежачому в межах від 0 до 90 градусів.

Аналогічно відповідність визначень можна показати для косинуса, тангенсу та котангенсу.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Одним із розділів математики, з якими школярі справляються з найбільшими труднощами, є тригонометрія. Не дивно: для того, щоб вільно опанувати цю область знань, потрібна наявність просторового мислення, уміння знаходити синуси, косинуси, тангенси, котангенси за формулами, спрощувати вирази, вміти застосовувати в обчисленнях число пі. Крім цього, необхідно вміти використовувати тригонометрію при підтвердженні теорем, а це вимагає або розвиненої математичної пам'яті, або вміння виводити складні логічні ланцюжки.

Витоки тригонометрії

Знайомство з цією наукою слід почати з визначення синуса, косинуса і тангенса кута, проте спочатку необхідно розібратися, чим займається тригонометрія.

Історично основним об'єктом дослідження цього розділу математичної науки були прямокутні трикутники. Наявність кута в 90 градусів дає можливість здійснювати різні операції, що дозволяють по двох сторонах і одному куті або по двох кутах і одній стороні визначати значення всіх параметрів фігури, що розглядається. У минулому люди помітили цю закономірність і стали активно користуватися нею при будівництві будівель, навігації, в астрономії і навіть у мистецтві.

Початковий етап

Спочатку люди міркували про взаємини кутів і сторін виключно з прикладу прямокутних трикутників. Потім було відкрито спеціальні формули, дозволили розширити межі вживання у повсякденні даного розділу математики.

Вивчення тригонометрії у школі сьогодні починається з прямокутних трикутників, після чого отримані знання використовуються учнями у фізиці та вирішенні абстрактних тригонометричних рівнянь, робота з якими починається у старших класах.

Сферична тригонометрія

Пізніше, коли наука вийшла на наступний рівень розвитку, формули із синусом, косинусом, тангенсом, котангенсом стали використовуватися у сферичній геометрії, де діють інші правила, а сума кутів у трикутнику завжди більша за 180 градусів. Цей розділ не вивчається в школі, проте знати про його існування необхідно як мінімум тому, що земна поверхня, та й поверхня будь-якої іншої планети, є опуклою, а значить, будь-яка розмітка поверхні буде в тривимірному просторі «дугоподібною».

Візьміть глобус та нитку. Прикладіть нитку до двох будь-яких точок на глобусі, щоб вона виявилася натягнутою. Зверніть увагу - вона набула форми дуги. З такими формами і має справу сферична геометрія, що застосовується в геодезії, астрономії та інших теоретичних та прикладних сферах.

Прямокутний трикутник

Небагато дізнавшись про способи застосування тригонометрії, повернемося до базової тригонометрії, щоб надалі розібратися, що таке синус, косинус, тангенс, які розрахунки можна за їх допомогою виконувати та які формули при цьому використовувати.

Насамперед необхідно усвідомити поняття, які стосуються прямокутного трикутника. По-перше, гіпотенуза - це сторона, що лежить навпроти кута 90 градусів. Вона є найдовшою. Ми пам'ятаємо, що з теоремі Піфагора її чисельне значення дорівнює кореню із суми квадратів двох інших сторін.

Наприклад, якщо дві сторони дорівнюють 3 і 4 сантиметрам відповідно, довжина гіпотенузи становитиме 5 сантиметрів. До речі, про це знали ще давні єгиптяни близько чотирьох із половиною тисяч років тому.

Дві сторони, що залишилися, які утворюють прямий кут, носять назву катетів. Крім того, треба пам'ятати, що сума кутів у трикутнику у прямокутній системі координат дорівнює 180 градусів.

Визначення

Нарешті, твердо розуміючи геометричну основу, можна звернутися до визначення синуса, косинуса та тангенсу кута.

Синусом кута називається відношення протилежного катета (тобто сторони, що розташовується навпроти потрібного кута) до гіпотенузи. Косинусом кута називається відношення прилеглого катета до гіпотенузи.

Запам'ятайте, що ні синус, ні косинус не може бути більшим за одиницю! Чому? Тому що гіпотенуза - це за умовчанням найдовша Яким би довгим не був катет, він буде коротшим за гіпотенузу, а значить, їхнє відношення завжди буде менше одиниці. Таким чином, якщо у вас у відповіді до завдання вийшов синус або косинус зі значенням більшим, ніж 1, шукайте помилку в розрахунках або міркуваннях. Ця відповідь однозначно невірна.

Нарешті, тангенсом кута називається відношення протилежної сторони до прилеглої. Той самий результат дасть поділ синуса на косинус. Подивіться: відповідно до формули ми ділимо довжину сторони на гіпотенузу, після чого ділимо на довжину другої сторони та множимо на гіпотенузу. Таким чином, ми отримуємо те саме співвідношення, що і у визначенні тангенса.

Котангенс, відповідно, є відношенням прилеглої до кута сторони до протилежної. Той самий результат ми отримаємо, розділивши одиницю на тангенс.

Отже, ми розглянули визначення, що таке синус, косинус, тангенс та котангенс, і можемо зайнятися формулами.

Найпростіші формули

У тригонометрії не обійтися без формул – як знайти синус, косинус, тангенс, котангенс без них? Адже саме це потрібно при вирішенні завдань.

Перша формула, яку необхідно знати, починаючи вивчати тригонометрію, свідчить, що сума квадратів синуса і косинуса кута дорівнює одиниці. Дана формула є прямим наслідком теореми Піфагора, проте дозволяє заощадити час, якщо потрібно дізнатися про величину кута, а не сторони.

Багато учнів що неспроможні запам'ятати другу формулу, також дуже популярну під час вирішення шкільних завдань: сума одиниці і квадрата тангенса кута дорівнює одиниці, поділеної на квадрат косинуса кута. Придивіться: адже це те саме твердження, що й у першій формулі, тільки обидві сторони тотожності були поділені на квадрат косинуса. Виходить, проста математична операція робить тригонометричну формулуабсолютно невпізнанною. Пам'ятайте: знаючи, що таке синус, косинус, тангенс і котангенс, правила перетворення і кілька базових формул ви можете самостійно вивести необхідні складніші формули на аркуші паперу.

Формули подвійного кута та складання аргументів

Ще дві формули, які потрібно вивчити, пов'язані зі значеннями синуса та косинуса при сумі та різниці кутів. Вони представлені на малюнку нижче. Зверніть увагу, що в першому випадку обидва рази перемножується синус та косинус, а в другому складається попарний твір синуса та косинуса.

Також існують формули, пов'язані з аргументами як подвійного кута. Вони повністю виводяться з попередніх - як тренування спробуйте отримати їх самостійно, прийнявши кут альфа рівним кутубета.

Нарешті, зверніть увагу, що формули подвійного кута можна перетворити так, щоб знизити рівень синуса, косинуса, тангенса альфа.

Теореми

Двома основними теоремами в базовій тригонометрії є теорема синусів та теорема косінусів. За допомогою цих теорем ви легко зможете зрозуміти, як знайти синус, косинус і тангенс, а значить, і площу фігури, величину кожної сторони і т.д.

Теорема синусів стверджує, що в результаті розподілу довжини кожної зі сторін трикутника на величину протилежного кута ми отримаємо однакове число. Більше того, це число дорівнює двом радіусам описаного кола, тобто кола, що містить всі точки даного трикутника.

Теорема косінусів узагальнює теорему Піфагора, проектуючи її на будь-які трикутники. Виявляється, від суми квадратів двох сторін відняти їх добуток, помножений на подвійний косинус суміжного ним кута - отримане значення виявиться одно квадрату третьої сторони. Таким чином, теорема Піфагора виявляється окремим випадком теореми косінусів.

Помилки через неуважність

Навіть знаючи, що таке синус, косинус і тангенс, легко зробити помилку через розсіяність уваги або помилки в найпростіших розрахунках. Щоб уникнути таких помилок, ознайомимося з найпопулярнішими з них.

По-перше, не слід перетворювати прості дроби в десяткові до отримання остаточного результату - можна і відповідь залишити у вигляді звичайного дробу, якщо за умови не обговорено протилежне. Таке перетворення не можна назвати помилкою, проте слід пам'ятати, що на кожному етапі завдання можуть з'явитися нові корені, які за задумом автора повинні скоротитися. І тут ви даремно витратите час на зайві математичні операції. Особливо це актуально для таких значень, як корінь із трьох або двох, адже вони зустрічаються в завданнях на кожному кроці. Те саме стосується заокруглень «некрасивих» чисел.

Зверніть увагу, що до будь-якого трикутника застосовна теорема косінусів, але не теорема Піфагора! Якщо ви помилково забудете відняти подвійний твір сторін, помножений на косинус кута між ними, ви не тільки отримаєте абсолютно невірний результат, але й продемонструєте повне нерозуміння предмета. Це гірше, ніж помилка через неуважність.

По-третє, не плутайте значення для кутів 30 і 60 градусів для синусів, косінусів, тангенсів, котангенсів. Запам'ятайте ці значення, адже синус 30 градусів дорівнює косінус 60, і навпаки. Їх легко переплутати, внаслідок чого ви неминуче отримаєте хибний результат.

Застосування

Багато учнів не поспішають братися до вивчення тригонометрії, оскільки розуміють її прикладного сенсу. Що таке синус, косинус, тангенс для інженера чи астронома? Це поняття, завдяки яким можна вирахувати відстань до далеких зірок, передбачити падіння метеорита, відправити дослідний зонд на іншу планету. Без них не можна звести будинок, спроектувати автомобіль, розрахувати навантаження на поверхню або траєкторію руху предмета. І це лише очевидні приклади! Адже тригонометрія у тому чи іншому вигляді використовується всюди, починаючи від музики та закінчуючи медициною.

На закінчення

Отже, ви – синус, косинус, тангенс. Ви можете використовувати їх у розрахунках та успішно вирішувати шкільні завдання.

Вся суть тригонометрії зводиться до того що, що за відомими параметрами трикутника потрібно вирахувати невідомі. Усього цих параметрів шість: довжини трьох сторін та величини трьох кутів. Вся різниця в завданнях полягає в тому, що даються різні вхідні дані.

Як знайти синус, косинус, тангенс, виходячи з відомих довжин катетів або гіпотенузи, ви тепер знаєте. Оскільки ці терміни позначають не що інше, як відношення, а відношення – це дріб, головною метою тригонометричного завданнястає знаходження коренів нормального рівняння або системи рівнянь. І тут вам допоможе звична шкільна математика.

Глава I. Рішення прямокутних трикутників

§3 (37). Основні співвідношення та завдання

У тригонометрії розглядаються завдання, у яких потрібно обчислити ті чи інші елементи трикутника за достатньою кількістю чисельних значень заданих елементів. Ці завдання зазвичай називаються завданнями на Рішеннятрикутник.

Нехай ABC – прямокутний трикутник, С – прямий кут, аі b- катети, що протилежать гострим кутам А і В, з- гіпотенуза (чорт. 3);

тоді маємо:

Косинус гострого кута є відношенням прилеглого катета до гіпотенузи:

соs A = b / c, cos В = a / c (1)

Синус гострого кута є відношення протилежного катета до гіпотенузи:

sin A = a / c, sin B = b / c (2)

Тангенс гострого кута є відношення протилежного катета до прилеглого:

tg A = a / b, tg B = b / a (3)

Котангенс гострого кута є відношенням прилеглого катета до протилежного:

ctg A = b / a, ctg B = a / b (4)

Сума гострих кутів дорівнює 90°.

Основні завдання прямокутні трикутники.

Завдання I. Дано гіпотенузу та один з гострих кутів, обчислити інші елементи.

Рішення.Нехай дані зі А. Кут В = 90 ° - А також відомий; катети знаходяться з формул (1) та (2).

а = с sin A, b = с cos А.

Завдання II . Дано катет і один з гострих кутів, обчислити інші елементи.

Рішення.Нехай дані аі A. Кут В = 90 ° - А відомий; з формул (3) та (2) знайдемо:

b = a tg B (= a ctg A), з = a/sin A

Завдання ІІІ. Дані катет та гіпотенуза, обчислити інші елементи.

Рішення.Нехай дані аі з(причому а< с ). З рівностей (2) знайдемо кут А:

sin A = a / cта A = arc sin a / c ,

і, нарешті, катет b:

b = з cos А (= з sin У).

Завдання IV. Дані катети а та b знайти інші елементи.

Рішення.З рівностей (3) знайдемо гострий кут, наприклад:

tg А = a / b, А = arc tg a / b ,

кут В = 90 ° - А,

гіпотенуза: c = a/sin A (= b/ sin B; = a/ cos B)

Нижче наводиться приклад розв'язання прямокутного трикутника за допомогою логарифмічних таблиць*.

* Обчислення елементів прямокутних трикутників за натуральними таблицями відоме з курсу геометрії VIII класу.

При обчисленнях за логарифмічними таблицями слід виписати відповідні формули, прологарифмувати їх, підставити числові дані, по таблицях знайти потрібні логарифми відомих елементів (або їх тригонометричних функцій), обчислити логарифми шуканих елементів (або їх тригонометричних функцій) і по таблицях знайти

приклад.Дані катет а= 166,1 та гіпотенуза з= 187,3; обчислити гострі кути, інший катет та площу.

Рішення.Маємо:

sin A = a / c; lg sin A = lg a- lg c;

A ≈ 62°30", ≈ 90° - 62°30" ≈ 27°30".

Обчислюємо катет b:

b = a tg B; lg b= lg b+ lg tg B;

Площу трикутника можна обчислити за формулою

S = 1/2 ab = 0,5 a 2 tg;

Для контролю підрахуємо кут А на логарифмічній лінійці:

А = arc sin a / c= arc sin 166 / 187 ≈ 62°.

Примітка.Катет bможна обчислити за теоремою Піфагора, користуючись таблицями квадратів і квадратного коріння(табл. III та IV):

b= √187,3 2 - 166,1 2 = √35080 - 27590 ≈ 86,54.

Розбіжність із раніше отриманим значенням b= 86,48 пояснюється похибками таблиць, у яких даються наближені значення функцій. Результат 86,54 є точнішим.

Знаючи один із катетів у прямокутному трикутнику, можна знайти другий катет та гіпотенузу використовуючи тригонометричні відносини – синус та тангенс відомого кута. Так як відношення протилежного куту катета до гіпотенузи дорівнює синусу цього кута, отже, щоб знайти гіпотенузу, потрібно катет розділити на синус кута. a/c=sin⁡α c=a/sin⁡α

Другий катет можна знайти з тангенсу відомого кута як відношення відомого катета до тангенсу. a/b=tan⁡α b=a/tan⁡α

Щоб обчислити невідомий кут прямокутному трикутнику потрібно з 90 градусів відняти величину кута α. β=90°-α

Периметр і площа прямокутного трикутника через катет і протилежний йому кут можна виразити, підставивши отримані раніше вирази другого катета і гіпотенузи в формули. P=a+b+c=a+a/tan⁡α +a/sin⁡α =a tan⁡α sin⁡α+a sin⁡α+a tan⁡α S=ab/2=a^2/( 2 tan⁡α)

Обчислити висоту можна також через тригонометричні відносини, але вже у внутрішньому прямокутному трикутнику зі стороною a, який вона утворює. Для цього потрібно бік a, як гіпотенузу такого трикутника помножити на синус кута β або косинус α, так як згідно тригонометричним тотожностямвони рівнозначні. (рис. 79.2) h=a cos⁡α

Медіана гіпотенузи дорівнює половині гіпотенузи або відомому катету a, поділеному на два синуси α. Щоб знайти медіани катетів, наведемо формули до відповідного виду для відомої сторони та кути. (рис.79.3) m_с=c/2=a/(2 sin⁡α) m_b=√(2a^2+2c^2-b^2)/2=√(2a^2+2a^2+2b^ 2-b^2)/2=√(4a^2+b^2)/2=√(4a^2+a^2/tan^2⁡α)/2=(a√(4 tan^2⁡) α+1))/(2 tan⁡α) m_a=√(2c^2+2b^2-a^2)/2=√(2a^2+2b^2+2b^2-a^2)/ 2=√(4b^2+a^2)/2=√(4b^2+c^2-b^2)/2=√(3 a^2/tan^2⁡α +a^2/sin ^2⁡α)/2=√((3a^2 sin^2⁡α+a^2 tan^2⁡α)/(tan^2⁡α sin^2⁡α))/2=(a√( 3 sin^2⁡α+tan^2⁡α))/(2 tan⁡α sin⁡α)

Так як бісектрисою прямого кута в трикутнику є добуток двох сторін і кореня з двох, поділений на суму цих сторін, замінивши один з катетів на відношення відомого катета до тангенсу, отримуємо наступне вираз. Аналогічно, підставивши відношення до другої та третьої формули, можна обчислити бісектриси кутів α та β. (рис.79.4) l_с=(aa/tan⁡α √2)/(a+a/tan⁡α)=(a^2 √2)/(a tan⁡α+a)=(a√2)/ (tan⁡α+1) l_a=√(bc(a+b+c)(b+ca))/(b+c)=√(bc((b+c)^2-a^2))/ (b+c)=√(bc(b^2+2bc+c^2-a^2))/(b+c)=√(bc(b^2+2bc+b^2))/(b +c)=√(bc(2b^2+2bc))/(b+c)=(b√(2c(b+c)))/(b+c)=(a/tan⁡α √(2c (a/tan⁡α +c)))/(a/tan⁡α +c)=(a√(2c(a/tan⁡α +c)))/(a+c tan⁡α) l_b=√ (ac(a+b+c)(a+cb))/(a+c)=(a√(2c(a+c)))/(a+c)=(a√(2c(a+a) /sin⁡α)))/(a+a/sin⁡α)=(a sin⁡α √(2c(a+a/sin⁡α)))/(a sin⁡α+a)

Середня лінія проходить паралельно одній із сторін трикутника, при цьому утворюючи ще один подібний прямокутний трикутник з такими ж за величиною кутами, в якому всі сторони вдвічі менші, ніж у початкового. Виходячи з цього, середні лінії можна знайти за такими формулами, знаючи тільки катет і кут, що протилежить йому. (рис.79.7) M_a=a/2 M_b=b/2=a/(2 tan⁡α) M_c=c/2=a/(2 sin⁡α)

Радіус вписаного кола дорівнює різниці катетів і гіпотенузи, поділеної на два, а щоб знайти радіус описаного кола, потрібно розділити на два гіпотенузи. Замінюємо другий катет та гіпотенузу на відношення катета a до синуса та тангенсу відповідно. (рис. 79.5, 79.6) r=(a+bc)/2=(a+a/tan⁡α-a/sin⁡α)/2=(a tan⁡α sin⁡α+a sin⁡α-a tan⁡α)/(2 tan⁡α sin⁡α) R=c/2=a/2sin⁡α

Що таке синус, косинус, тангенс, котангенс кута допоможе зрозуміти прямокутний трикутник.

Як називаються сторони прямокутного трикутника? Все вірно, гіпотенуза та катети: гіпотенуза - це сторона, яка лежить навпроти прямого кута (у нашому прикладі це сторона \(AC\)); катети - це дві сторони \(AB \) і \(BC \) (ті, що прилягають до прямого кута), причому, якщо розглядати катети щодо кута \(BC \) , то катет \(AB \) - це прилеглий катет, а катет (BC) - протилежний. Отже, тепер дамо відповідь на запитання: що таке синус, косинус, тангенс і котангенс кута?

Синус кута- Це відношення протилежного (дальнього) катета до гіпотенузи.

У нашому трикутнику:

\[ \sin \beta =\dfrac(BC)(AC) \]

Косинус кута- Це відношення прилеглого (близького) катета до гіпотенузи.

У нашому трикутнику:

\[ \cos \beta =\dfrac(AB)(AC) \]

Тангенс кута- Це відношення протилежного (дальнього) катета до прилеглого (близького).

У нашому трикутнику:

\[ tg\beta = dfrac(BC)(AB) \]

Котангенс кута- Це відношення прилеглого (близького) катета до протилежного (дальнього).

У нашому трикутнику:

\[ ctg\beta = dfrac(AB)(BC) \]

Ці визначення необхідні запам'ятати! Щоб було простіше запам'ятати який катет на що ділити, необхідно чітко усвідомити, що в тангенсеі котангенсісидять тільки катети, а гіпотенуза з'являється тільки в синусіі косинусі. А далі можна придумати ланцюжок асоціацій. Наприклад, ось таку:

Косинус→торкатися→доторкнутися→прилежний;

Котангенс→торкатися→доторкнутися→прилежний.

Насамперед, слід запам'ятати, що синус, косинус, тангенс і котангенс як відносини сторін трикутника не залежить від довжин цих сторін (при одному вугіллі). Не віриш? Тоді переконайся, подивившись на малюнок:

Розглянемо, наприклад, косинус кута (beta). За визначенням, із трикутника \(ABC \) : \(\cos \beta =\dfrac(AB)(AC)=\dfrac(4)(6)=\dfrac(2)(3) \), але ми можемо обчислити косинус кута \(\beta \) і з трикутника \(AHI \) : \(\cos \beta =\dfrac(AH)(AI)=\dfrac(6)(9)=\dfrac(2)(3) \). Бачиш, довжини у сторін різні, а значення косинуса одного кута одне й те саме. Таким чином, значення синуса, косинуса, тангенсу та котангенсу залежать виключно від величини кута.

Якщо розібрався у термінах, то вперед закріплювати їх!

Для трикутника \(ABC \), зображеного нижче на малюнку, знайдемо \(\sin \ \alpha ,\ \cos \ \alpha ,\ tg\ \alpha ,\ ctg\ \alpha \).

\(\begin(array)(l)\sin \ \alpha =\dfrac(4)(5)=0,8\\cos \ \alpha =\dfrac(3)(5)=0,6\\ tg \ \ alpha = \ dfrac (4) (3) \ cct \ \ alpha = \ dfrac (3) (4) = 0,75 \ end (array) \)

Ну що, вловив? Тоді пробуй сам: порахуй те саме для кута \(\beta\) .

Відповіді: \(\sin \ \beta =0,6;\ \cos \ \beta =0,8;\ tg\ \beta =0,75;\ ctg\ \beta =\dfrac(4)(3) \).

Одиничне (тригонометричне) коло

Розбираючись у поняттях градуса і радіана, ми розглядали коло з радіусом, рівним (1). Таке коло називається одиничною. Вона дуже знадобиться щодо тригонометрії. Тому зупинимося на ній трохи докладніше.

Як можна помітити, це коло побудовано в декартовій системі координат. Радіус кола дорівнює одиниці, при цьому центр кола лежить на початку координат, початкове положення радіус-вектора зафіксовано вздовж позитивного напрямку осі \(x \) (у нашому прикладі, це радіус \(AB \) ).

Кожній точці кола відповідають два числа: координата по осі (x) і координата по осі (y). А що це за числа-координати? І взагалі, яке відношення вони мають до цієї теми? Для цього треба згадати про розглянутий прямокутний трикутник. На малюнку, наведеному вище, можна помітити аж два прямокутні трикутники. Розглянемо трикутник \(ACG\). Він прямокутний, тому що \(CG\) є перпендикуляром до осі \(x\).

Чому дорівнює \(\cos \ \alpha\) з трикутника \(ACG\)? Все вірно \(\cos \ \alpha =\dfrac(AG)(AC) \). Крім того, нам відомо, що \(AC \) - це радіус одиничного кола, а значить, \(AC=1 \) . Підставимо це значення на нашу формулу для косинуса. Ось що виходить:

\(\cos \ \alpha =\dfrac(AG)(AC)=\dfrac(AG)(1)=AG \).

А чому дорівнює \(\sin \ \alpha\) з трикутника \(ACG\)? Ну звичайно, \(\sin \alpha =\dfrac(CG)(AC) \)! Підставимо значення радіусу \(AC \) в цю формулу і отримаємо:

\(\sin \alpha =\dfrac(CG)(AC)=\dfrac(CG)(1)=CG \)

Так, а можеш сказати, які координати має точка \(C\), що належить колу? Ну що, ні? А якщо збагнути, що \(\cos\\alpha\) і \(\sin\alpha\) - це просто числа? Який координаті відповідає \(\cos\alpha\)? Ну, звичайно, координати (x)! А якій координаті відповідає \(\sin\alpha\)? Все вірно, координати \ (y \)! Таким чином, точка \(C(x;y)=C(\cos \alpha ;\sin \alpha) \).

А чому тоді рівні \(tg\alpha\) та \(ctg\alpha\)? Все вірно, скористаємося відповідними визначеннями тангенсу та котангенсу та отримаємо, що \(tg \alpha =\dfrac(\sin \alpha )(\cos \alpha )=\dfrac(y)(x) \), а \(ctg \alpha =\dfrac(\cos \alpha )(\sin \alpha )=\dfrac(x)(y) \).

А що, якщо кут буде більшим? Ось, наприклад, як у цьому малюнку:

Що ж змінилося в даному прикладі? Давай розбиратись. Для цього знову звернемося до прямокутного трикутника. Розглянемо прямокутний трикутник \(((A)_(1))((C)_(1))G \) : кут (як прилеглий до кута \(\beta \)). Чому дорівнює значення синуса, косинуса, тангенсу та котангенсу для кута \(((C)_(1))((A)_(1))G=180()^\circ -\beta \ \)? Все вірно, дотримуємося відповідних визначень тригонометричних функцій:

\(\begin(array)(l)\sin \angle ((C)_(1))((A)_(1))G=\dfrac(((C)_(1))G)(( (A)_(1))((C)_(1)))=\dfrac(((C)_(1))G)(1)=((C)_(1))G=y; \\cos \angle ((C)_(1))((A)_(1))G=\dfrac(((A)_(1))G)(((A)_(1)) ((C)_(1)))=\dfrac(((A)_(1))G)(1)=((A)_(1))G=x;\\tg\angle ((C )_(1))((A)_(1))G=\dfrac(((C)_(1))G)(((A)_(1))G)=\dfrac(y)( x);\ctg\angle ((C)_(1))((A)_(1))G=\dfrac(((A)_(1))G)(((C)_(1) ))G)=\dfrac(x)(y)\end(array) \)

Ну ось, як бачиш, значення синуса кута так само відповідає координаті \(y \) ; значення косинуса кута - координаті (x); а значення тангенсу та котангенсу відповідним співвідношенням. Таким чином, ці співвідношення застосовуються до будь-яких поворотів радіус-вектора.

Вже згадувалося, що початкове положення радіус-вектора - вздовж позитивного напрямку осі (x). Досі ми обертали цей вектор проти годинникової стрілки, а що буде, якщо повернути його за годинниковою стрілкою? Нічого екстраординарного, вийде так само кут певної величини, але він буде негативним. Таким чином, при обертанні радіус-вектора проти годинникової стрілки виходять позитивні кути, а при обертанні за годинниковою стрілкою – негативні.

Отже, ми знаємо, що цілий оборот радіус-вектора по колу складає \(360()^\circ\) або \(2\pi\). А можна повернути радіус-вектор на \(390()^\circ\) або на \(-1140()^\circ\)? Ну звісно, ​​можна! У першому випадку, \(390()^\circ =360()^\circ +30()^\circ \), таким чином, радіус-вектор зробить один повний оборот і зупиниться в положенні \(30()^\circ \) або \(\dfrac(\pi)(6) \) .

У другому випадку, \(-1140()^\circ =-360()^\circ \cdot 3-60()^\circ \), тобто радіус-вектор зробить три повні обороти і зупиниться в положенні \(-60()^\circ \) або \(-\dfrac(\pi )(3) \) .

Таким чином, з наведених прикладів можемо зробити висновок, що кути, що відрізняються на \(360()^\circ \cdot m \) або \(2\pi \cdot m \) (де \(m \) – будь-яке ціле число ), відповідають тому самому положенню радіус-вектора.

Нижче на малюнку зображено кут \(\beta =-60()^\circ \) . Це ж зображення відповідає куту \(-420()^\circ ,-780()^\circ ,\ 300()^\circ ,660()^\circ \)і т.д. Цей список можна продовжити до безкінечності. Усі ці кути можна записати загальною формулою \(\beta +360()^\circ \cdot m \)або \(\beta +2\pi \cdot m \) (де \(m \) – будь-яке ціле число)

\(\begin(array)(l)-420()^\circ =-60+360\cdot (-1);\-780()^\circ =-60+360\cdot (-2); \\300()^\circ =-60+360\cdot 1;\\660()^\circ =-60+360\cdot 2.\end(array) \)

Тепер, знаючи визначення основних тригонометричних функцій та використовуючи одиничне коло, спробуй відповісти, чому рівні значення:

\(\begin(array)(l)\sin \ 90()^\circ =?\\\cos \ 90()^\circ =?\\\text(tg)\ 90()^\circ =? \\text(ctg)\ 90()^\circ =?\\\sin \ 180()^\circ =\sin \ \pi =?\\\cos \ 180()^\circ =\cos \ \pi =?\\\text(tg)\ 180()^\circ =\text(tg)\ \pi =?\\\text(ctg)\ 180()^\circ =\text(ctg)\ \pi =?\\\sin \ 270()^\circ =?\\cos \ 270()^\circ =?\\\text(tg)\ 270()^\circ =?\\\text (ctg)\ 270()^\circ =?\\\sin \ 360()^\circ =?\\cos \ 360()^\circ =?\\\text(tg)\ 360()^ \circ =?\\\text(ctg)\ 360()^\circ =?\\\sin \ 450()^\circ =?\\\cos \ 450()^\circ =?\\\text (tg)\ 450()^\circ =?\\\text(ctg)\ 450()^\circ =?\end(array) \)

Ось тобі на допомогу одиничне коло:

Виникли проблеми? Тоді давай розбиратись. Отже, ми знаємо, що:

\(\begin(array)(l)\sin \alpha =y;\\cos\alpha =x;\tg\alpha =\dfrac(y)(x);\ctg\alpha =\dfrac(x )(y).\end(array) \)

Звідси ми визначаємо координати точок, що відповідають певним заходам кута. Ну що ж, почнемо по порядку: кутку в \(90()^\circ =\dfrac(\pi )(2) \)відповідає точка з координатами \(\left(0;1 \right) \) , отже:

\(\sin 90()^\circ =y=1 \);

\(\cos 90()^\circ =x=0 \);

\(\text(tg)\ 90()^\circ =\dfrac(y)(x)=\dfrac(1)(0)\Rightarrow \text(tg)\ 90()^\circ \)- не існує;

\(\text(ctg)\ 90()^\circ =\dfrac(x)(y)=\dfrac(0)(1)=0 \).

Далі, дотримуючись тієї ж логіки, з'ясовуємо, що кутам \(180()^\circ ,\ 270()^\circ ,\ 360()^\circ ,\ 450()^\circ (=360()^\circ +90()^\circ)\ \ )відповідають точки з координатами \(\left(-1;0 \right),\text( )\left(0;-1 \right),\text( )\left(1;0 \right),\text( )\left(0 ;1 \right) \)відповідно. Знаючи це, легко визначити значення тригонометричних функцій у відповідних точках. Спочатку спробуй сам, а потім звіряйся з відповідями.

Відповіді:

\(\displaystyle \sin \ 180()^\circ =\sin \ \pi =0 \)

\(\displaystyle \cos \ 180()^\circ =\cos \ \pi =-1 \)

\(\text(tg)\ 180()^\circ =\text(tg)\ \pi =\dfrac(0)(-1)=0 \)

\(\text(ctg)\ 180()^\circ =\text(ctg)\ \pi =\dfrac(-1)(0)\Rightarrow \text(ctg)\ \pi \)- не існує

\(\sin \ 270()^\circ =-1 \)

\(\cos \ 270()^\circ =0 \)

\(\text(tg)\ 270()^\circ =\dfrac(-1)(0)\Rightarrow \text(tg)\ 270()^\circ \)- не існує

\(\text(ctg)\ 270()^\circ =\dfrac(0)(-1)=0 \)

\(\sin \ 360()^\circ =0 \)

\(\cos \ 360()^\circ =1 \)

\(\text(tg)\ 360()^\circ =\dfrac(0)(1)=0 \)

\(\text(ctg)\ 360()^\circ =\dfrac(1)(0)\Rightarrow \text(ctg)\ 2\pi \)- не існує

\(\sin \ 450()^\circ =\sin \ \left(360()^\circ +90()^\circ \right)=\sin \ 90()^\circ =1 \)

\(\cos \ 450()^\circ =\cos \ \left(360()^\circ +90()^\circ \right)=\cos \ 90()^\circ =0 \)

\(\text(tg)\ 450()^\circ =\text(tg)\ \left(360()^\circ +90()^\circ \right)=\text(tg)\ 90() ^\circ =\dfrac(1)(0)\Rightarrow \text(tg)\ 450()^\circ \)- не існує

\(\text(ctg)\ 450()^\circ =\text(ctg)\left(360()^\circ +90()^\circ \right)=\text(ctg)\ 90()^ \circ =\dfrac(0)(1)=0 \).

Таким чином, ми можемо скласти таку табличку:

Немає потреби пам'ятати всі ці значення. Достатньо пам'ятати відповідність координат точок на одиничному колі та значень тригонометричних функцій:

\(\left. \begin(array)(l)\sin \alpha =y;\\cos \alpha =x;\\tg \alpha =\dfrac(y)(x);\\ctg \alpha =\ dfrac(x)(y).\end(array) \right\)\text(Треба запам'ятати або вміти виводити!! \) !}

А ось значення тригонометричних функцій кутів в і \(30()^\circ =\dfrac(\pi )(6),\ 45()^\circ =\dfrac(\pi )(4) \), наведених нижче у таблиці, необхідно запам'ятати:

Не треба лякатися, зараз покажемо один із прикладів досить простого запам'ятовування відповідних значень:

Для користування цим методом життєво необхідно запам'ятати значення синуса для всіх трьох заходів кута ( \(30()^\circ =\dfrac(\pi )(6),\ 45()^\circ =\dfrac(\pi )(4),\ 60()^\circ =\dfrac(\pi )(3) \)), а також значення тангенсу кута в \(30()^\circ \). Знаючи ці \(4\) значення, досить просто відновити всю таблицю повністю -значення косинуса переносяться відповідно до стрілочок, тобто:

\(\begin(array)(l)\sin 30()^\circ =\cos \ 60()^\circ =\dfrac(1)(2)\ \\\sin 45()^\circ = \cos \ 45()^\circ =\dfrac(\sqrt(2))(2)\\\sin 60()^\circ =\cos \ 30()^\circ =\dfrac(\sqrt(3) ))(2)\ \end(array) \)

\(\text(tg)\ 30()^\circ \ =\dfrac(1)(\sqrt(3)) \)знаючи це можна відновити значення для \(\text(tg)\ 45()^\circ , \text(tg)\ 60()^\circ \). Чисельник "\(1 \)" буде відповідати \(\text(tg)\ 45()^\circ \ \) , а знаменник "\(\sqrt(\text(3)) \)" відповідає \(\text (tg) \ 60 () ^ \ circ \ \) . Значення котангенсу переносяться відповідно до стрілочок, вказаних на малюнку. Якщо це усвідомити і запам'ятати схему зі стрілочками, то буде достатньо пам'ятати всього значення з таблиці.

Координати точки на колі

А чи можна знайти точку (її координати) на колі, знаючи координати центру кола, його радіус та кут повороту? Ну, звісно, ​​можна! Давай виведемо загальну формулу для знаходження координат точки. Ось, наприклад, перед нами таке коло:

Нам дано, що точка \(K(((x)_(0));((y)_(0)))=K(3;2) \)- Центр кола. Радіус кола дорівнює \(1,5\). Необхідно знайти координати точки \(P \), отриманої поворотом точки \(O \) на \(\delta \) градусів.

Як видно з малюнка, координаті \(x \) точки \(P \) відповідає довжина відрізка \(TP=UQ=UK+KQ \). Довжина відрізка \(UK\) відповідає координаті \(x\) центру кола, тобто дорівнює \(3 \). Довжину відрізка (KQ) можна виразити, використовуючи визначення косинуса:

\(\cos \ \delta =\dfrac(KQ)(KP)=\dfrac(KQ)(r)\Rightarrow KQ=r\cdot \cos \ \delta \).

Тоді маємо, що для точки \(P\) координата \(x=((x)_(0))+r\cdot \cos \ \delta =3+1,5\cdot \cos \ \delta \).

За тією ж логікою знаходимо значення координати для точки \ (P \) . Таким чином,

\(y=((y)_(0))+r\cdot \sin \ \delta =2+1,5\cdot \sin \delta \).

Отже, у загальному вигляді координати точок визначаються за формулами:

\(\begin(array)(l)x=((x)_(0))+r\cdot \cos \ \delta \\y=((y)_(0))+r\cdot \sin \ \delta \end(array) \), де

\(((x)_(0)),((y)_(0)) \) - координати центру кола,

\(r \) - радіус кола,

\(\delta \) - Кут повороту радіуса вектора.

Як можна помітити, для одиничного кола, що розглядається нами, ці формули значно скорочуються, так як координати центру рівні нулю, а радіус дорівнює одиниці:

\(\begin(array)(l)x=((x)_(0))+r\cdot \cos \ \delta =0+1\cdot \cos \ \delta =\cos \ \delta \\y =((y)_(0))+r\cdot \sin \ \delta =0+1\cdot \sin \ \delta =\sin \ \delta \end(array) \)

У вашому браузері вимкнено Javascript.
Щоб розрахувати, необхідно дозволити елементи ActiveX!